CHAPTER 12 PERFORMING USER INTERFACE DESIGN 383

A complete discussion of user interface evaluation methods is best left to books
dedicated to the subject. For further information, see [LEA88], [MAN97], and [HAC98].

The user interface is arguably the most important element of a computer-based sys-
tem or product. If the interface is poorly designed, the user’s ability to tap the com-
putational power of an application may be severely hindered. In fact, a weak
interface may cause an otherwise well-designed and solidly implemented applica-
tion to fail. _

Three important principles guide the design of effective user interfaces: (1) place
the user in control, (2) reduce the user's memory load, and (3) make the interface
consistent. To achieve an interface that abides by these principles, an organized de-
sign process must be conducted.

The development of a user interface begins with a series of analysis tasks. These
include user identification, task, and environmental analysis/modeling. User analy-
sis defines the profiles of various end-users and applies information gathered from
a variety of business and technical sources. Task analysis defines user tasks and ac-
tions using either an elaborative or object-oriented approach, applying use-cases,
task and object elaboration, workflow analysis, and hierarchical task representa-
tions to fully understand the human-computer interaction. Environmental analysis
identifies the physical and social structures in which the interface must operate.

Once tasks have been identified, user scenarios are created and analyzed to de-
fine a set of interface objects and actions. This provides a basis for the creation of
screen layout that depicts graphical design and placement of icons, definition of de-
scriptive screen text, specification and titling for windows, and specification of ma-
jor and minor menu items. Design issues such as response time, command and
action structure, error handling, and help facilities are considered as the design
model is refined. A variety of implementation tools are used to build a prototype for
evaluation by the user.

[APPO3] Apple Computer, People with Special Needs, 2003, available at http://www.
apple.com/disability/.

[BORO1] Borchers, J., A Pattern Approach to Interaction Design, Wiley, 2001.

[CON95] Constantine, L., “What DO Users Want? Engineering Usability in Software,” Windows
Tech Journal, December, 1995, available from http://www.forUse.com.

[DON99] Donahue, G., S. Weinschenck, and J. Nowicki, “Usability Is Good Business,” Com-
puware Corp., July, 1999, available from http://www.compuware.com.

[DUYO02] vanDuyne, D., J. Landay, and J. Hong, The Design of Sites, Addison-Wesley, 2002.

[HAC98] Hackos, J., and J. Redish, User and Task Analysis for Interface Design, Wiley, 1998.

[IBMO3] IBM, Overview of Software Globalization, 2003, available at http://o0ss.software.ibm.
com/icu/userguide/i18n.html.



384

PART TWO SOFTWARE ENGINEERING PRACTICE

[LEA88] Lea, M., “Evaluating User Interface Designs,” User Interface Design for Computer Sys-
tems, Halstead Press (Wiley), 1988.

[MAN97] Mandel, T., The Elements of User Interface Design, Wiley, 1997.

[MIC03] Microsoft Accessibility Technology for Everyone, 2003, available at http://www.
microsoft.com/enable/.

[MON84] Monk, A., (ed.), Fundamentals of Human-Computer Interaction, Academic Press, 1984.

[MOR81] Moran, T. P,, “The Command Language Grammar: A Representation for the User
Interface of Interactive Computer Systems,” Intl. Journal of Man-Machine Studies, vol. 15,
pp. 3-50.

[NIEOO] Nielsen, )., Designing Web Usability, New Riders Publishing, 2000.

[NOR86] Norman, D. A., “Cognitive Engineering,” in User Centered Systems Design, Lawrence
Earlbaum Associates, 1986.

[RUB88] Rubin, T., User Interface Design for Computer Systems, Halstead Press (Wiley), 1988.

[SHN90] Shneiderman, B., Designing the User Interface, 3rd ed., Addison-Wesley, 1990.

[TID99] Tidwell, )., “Common Ground: A Pattern Language for HCI Design,” available at
http://www.mit.edu/~jtidwell/interaction_patterns.html, May 1999.

[TIDO2] Tidwell, J., “IU Patterns and Techniques,” available at http://time-tripper.com/uipatterns/
index.html, May 2002.

[UNI03] Unicode, Inc.; The Unicode Home Page, 2003, available at http://www.unicode.org/.

[W3C03] World Wide Web Consortium, Web Content Accessibility Guidelines, 2003, available at
http://www.w3.0rg/TR/2003/WD-WCAG20-20030624/ .

[WELO1] vanWelie, M., “Interaction Design Patterns,” available at http://www.welie. com/
patterns/, 2001.

12.1. Provide a few examples that illustrate why response time variability can be an issue.

12.2. Develop two additional design principles that “reduce the user’s memory load.”

12.3. Add at least five additional questions to the list developed for content analysis in Section
12.3.3.

12.4. Develop two additional design principles that “make the interface consistent.”

12.5. You have been asked to develop a Web-based home banking system. Develop a user
model, design model, mental model, and an implementation model.

12.6. Develop a set of screen layouts with a definition of major and minor menu items for the
system in Problem 12.5.

12.7. Develop two additional design principles that “place the user in control.”

12.8. Perform a detailed task analysis for the system in Problem 12.5. Use either an elaborative
or object-oriented approach.

12.9. Develop a set of screen layouts with a definition of major and minor menu items for the
SafeHome system. You may elect to take a different approach than the one shown for the screen
layout in Figure 12.3.

12.10. Continuing Problem 12.8, define interface objects and actions for the application. Iden-
tify each object type.

12.11. Describe your approach to user help facilities for the task analysis you have performed
as part of Problem 12.5.

12.12. Describe the best and worst interfaces that you have ever worked with and critique
them relative to the concepts introduced in this chapter.



CHAPTER 12 PERFORMING USER INTERFACE DESIGN 385

12.13. Develop an approach that would automatically integrate error messages and a user
help facility. That is, the system would automatically recognize the error type and provide a help
window with suggestions for correcting it. Perform a reasonably complete software design that
considers appropriate data structures and algorithms.

12.14. Develop an interface evaluation questionnaire that contains 20 generic questions that
would apply to most interfaces. Have 10 classmates complete the questionnaire for an interac-
tive system that you all use. Summarize the results and report them to your class.

Although his book is not specifically about humari/computer interfaces, much of what Donald
Norman (The Design of Everyday Things, reissue edition, Currency/Doubleday, 1990) has to say
about the psychology of effective design applies to the user interface. It is recommended read-
ing for anyone who is serious about doing high-quality interface design.

Graphical user interfaces are ubiquitous in the modern world of computing. Whether it is
used for an ATM, a mobile phone, a PDA, a Web site, or a business application, the user inter-
face provides a window into the software. It is for this reason that books addressed to interface
design abound. Galitz (The Essential Guide to User Interface Design, Wiley, 2002), Cooper (About
Face 2.0: The Essentials of User Interface Design, IDG Books, 2003), Beyer and Holtzblatt (Contex-
tual Design: A Customer Centered Approach to Systems Design, Morgan-Kaufmann, 2002), Raskin
(The Humane Interface, Addison-Wesley, 2000), Constantine and Lockwood (Software for Use,
ACM Press, 1999), Mayhew (The Usability Engineering Lifecycle, Morgan-Kaufmann, 1999) all
discuss usability, user interface concepts, principles, and design techniques and contain many
useful examples.

Johnson (GUI Bloopers: Don'ts and Do's for Software Developers and Web Designers, Morgan-
Kaufmann, 2000) provides useful guidance for those that learn more effectively by examining
counter-examples. An enjoyable book by Cooper (The Inmates Are Running the Asylum, Sams
Publishing, 1999) discusses why high-tech products drive us crazy and how to design ones that
don't. )

Task analysis and modeling are pivotal interface design activities. Hackos and Redish
[HAC98] have written a book dedicated to these subjects and provide a detailed method for ap-
proaching task analysis. Wood (User Interface Design: Bridging the Gap from User Requirements
to Design, CRC Press, 1997) considers the analysis activity for interfaces and the transition to de-
sign tasks.

The evaluation activity focuses on usability. Books by Rubin (Handbook of Usability Test-
ing: How to Plan, Design, and Conduct Effective Tests, Wiley, 1994) and Nielsen (Usability In-
spection Methods, Wiley, 1994) address the topic in considerable detail.

In a unique book that may be of considerable interest to product designers, Murphy (Front
Panel: Designing Software for Embedded User Interfaces, R&D Books, 1998) provides detailed
guidance for the design of interfaces for embedded systems and addresses safety hazards in-
herent in controls, handling heavy machinery, and interfaces for medical or transport systems.
Interface design for embedded products is also discussed by Garrett (Advanced Instrumentation
and Computer I/O Design: Real-Time System Computer Interface Engineering, IEEE, 1994).

A wide variety of information sources on user interface design are available on the Internet.
An up-to-date list of World Wide Web references that are relevant to user interface design can
be found at the SEPA Web site:
http://www.mhhe.com/pressman.



" TESTING

STRATEGIES
Key strategy for software testing integrates software test case design meth-
CONCEPTS ods into a well-planned series of steps that result in the successful con-
dpha/betutesiing . MR o struction of software. The strategy provides a road map that describes
dobugging “the steps to be conducted as part of testing, when these steps are planned and
completion aiteria then undertaken, and how much effort, time, and resources will be required.
. ) Therefore, any testing strategy must incorporate test planning, test case design,
strategy test execution, and resultant data collection and evaluation.
intogration festiag A software testing strategy should be flexible enough to promote a customized
e testing approach. At the same time, it must be rigid enough to promote reason-
able planning and management tracking as the project progresses. Shooman
00 strategy [SHO83] discusses these issues:
smoke m':“'g ’ In many ways, testing is an individualistic process, and the number of different types
systom festing of tests varies as much as the different development approaches. For many.years, our
only defense against programming errors was careful design and the native intelli-
test spacication gence of the programmer. We are now in an era in which modern design techniques
walt testing [and formal technical reviews] are helping us to reduce the number of initial errors
vev " that are inherent in the code. Similarly, different test methods are beginning to clus-
validation testing ter themselves into several distinct approaches and philosophies.

These “approaches and philosophies” are what we shall call strategy. In Chap-
ter 14, the technology of software testing is presented. In this chapter, we focus
our attention on the strategy for software testing.

386



CHAPTER 13 TESTING STRATEGIES 387

Testing is a set of activities that can be planned in advance and conducted system-
atically. For this reason a template for software testing—a set of steps into which we
can place specific test case design techniques and testing methods—should be de-
fined for the software process.

A number of software testing strategies have been proposed in the literature. All
provide the software developer with a template for testing and all have the follow-
ing generic characteristics:

e To perform effective testing, a software team should conduct effective formal
technical reviews (Chapter 26). By doing this, many errors will be eliminated
before testing commences.

o Testing begins at the component level and works “outward” toward the inte-
gration of the entire computer-based system.

o Different testing techniques are appropriate at different points in time.

e Testing is conducted by the developer of the software and (for large projects)
an independent test group.

e Testing and debugging are different activities, but debugging must be accom-
modated in any testing strategy.

A strategy for software testing must accommodate low-level tests that are necessary
to verify that a small source code segment has been correctly implemented as well
as high-level tests that validate major system functions against customer require-
ments. A strategy must provide guidance for the practitioner and a set of milestones
for the manager. Because the steps of the test strategy occur at a time when dead-
line pressure begins to rise, progress must be measurable and problems must sur-
face as early as possible.



388

Cona$

Don'’t get sloppy and
view festing as o
“safety net” that will
catch all errors that
occurred because of
weak software engr
neering practices. It
won't. Stress quality
and error detection
throughout the
software process.

PART TWO SOFTWARE ENGINEERING PRACTICE

13.1.1 Verification and Validation

Software testing is one element of a broader topic that is often referred to as verifi-
cation and validation (V&V). Verification refers to the set of activities that ensure that
software correctly implements a specific function. Validation refers to a different set
of activities that ensure that the software that has been built is traceable to customer
requirements.! Boechm [BOE81] states this another way:

Verification: Are we building the product right?

validation: Are we building the right product?

The definition of V&V encompasses many of the activities that are encompassed by
software quality assurance (SQA) and discussed in detail in Chapter 26.

Verification and validation encompasses a wide array of SQA activities that in-
clude formal technical reviews, quality and configuration audits, performance mon-
itoring, simulation, feasibility study, documentation review, database review,
algorithm analyéis, development testing, usability testing, qualification testing, and
installation testing [WAL89]. Although testing plays an extremely important role in
V&YV, many other activities are also necessary.

ony responsible effort to develop a softwars system."

Testing does provide the last bastion from which quality can be assessed and,
more pragmatically, errors can be uncovered. But testing should not be viewed as a
safety net. As they say, “You can't test in quality. If it's not there before you begin test-
ing, it won't be there when you're finished testing.” Quality is incorporated into soft-
ware throughout the process of software engineering. Proper application of methods
and tools, effective formal technical reviews, and solid management and measure-
ment all lead to quality that is confirmed during testing.

Miller [MIL77] relates software testing to quality assurance by stating that “the un-
derlying motivation of program testing is to affirm software quality with methods
that can be economically and effectively applied to both large-scale and small-scale
systems.”

13.1.2 Organizing for Software Testing

For every software project, there is an inherent conflict of interest that occurs as test-
ing begins. The people who have built the software are now asked to test the

1 1t should be noted that there is a strong divergence of opinion about what types of testing consti-
tute “validation.” Some people believe that all testing is verification and that validation is conducted
when requirements are reviewed and approved, and later, by the user when the system is opera-
tional. Other people view unit and integration testing (Sections 13.3.1 and 13.3.2) as verification
and higher-order testing (discussed later in this chapter) as validation.



[/
e,
POINT
An independent fest
group does not have
the “conflict of
interest” that builders
of the software might
experience.

Gpwc:‘

If an IT6 does not exist
within your organize-
tion, you'll have fo
take ifs point of view.
When you test, fry to
break the software.

CHAPTER 13 TESTING STRATEGIES 389

software. This seems harmless in itself: after all, who knows the program better than
its developers? Unfortunately, these same developers have a vested interest in
demonstrating that the program is error free, that it works according to customer re-
quirements, and that it will be completed on schedule and within budget. Each of
these interests mitigate against thorough testing.

hazord of programming; testing is the treatment.”

From a psychological point of view, software analysis and design (along with cod-
ing) are constructive tasks. The software engineer analyzes, models, and then cre-
ates a computer program and its documentation. Like any builder, the software
engineer is proud of the edifice that has been built and looks askance at anyone who
attempts to tear it down. When testing commences, there is a subtle, yet definite, at-
tempt to “break” the thing that the software engineer has built. From the point of
view of the builder, testing can be considered to be (psychologically) destructive. So
the builder treads lightly, designing and executing tests that will demonstrate that the
program works, rather than uncovering errors. Unfortunately, errors will be present.
And, if the software engineer doesn't find them, the customer will!

There are often a number of misconceptions that can be erroneously inferred
from the preceding discussion: (1) that the developer of software should do no test-
ing at all, (2) that the software should be “tossed over the wall” to strangers who will
test it mercilessly, (3) that testers get involved with the project only when the testing
steps are about to begin. Each of these statements is incorrect.

The software developer is always responsible for testing the individual units
(components) of the program, ensuring that each performs the function or exhibits
the behavior for which it was designed. In many cases, the developer also conducts
integration testing—a testing step that leads to the construction (and test) of the
complete software architecture. Only after the software architecture is complete
does an independent test group become involved.

The role of an independent test group (ITG) is to remove the inherent problerns as-
sociated with letting the builder test the thing that has been built. Independent test-
ing removes the conflict of interest that may otherwise be present. After all, ITG
personnel are paid to find errors.

However, the software engineer doesn't turn the program over to ITG and walk
away. The developer and the ITG work closely throughout a software project to en-
sure that thorough tests will be conducted. While testing is conducted, the developer
must be available to correct errors that are uncovered.

moks s hinking that the feting oo s responsible for essring




390

What is the

overall
strategy for
software testing?

PART TWO SOFTWARE ENGINEERING PRACTICE

The ITG is part of the software development project team in the sense that it be-
comes involved during analysis and design and stays involved (planning and speci-
fying test procedures) throughout a large project. However, in many cases the ITG
reports to the software quality assurance organization, thereby achieving a degree
of independence that might not be possible if it were a part of the software engi-
neering organization.

13.1.3 A Software Testing Strategy for Conventional
Software Architectures

The software process may be viewed as the spiral illustrated in Figure 13.1. Initially,
system engineering defines the role of software and leads to software requirements
analysis, where the information domain, function, behavior, performance, con-
straints, and validation criteria for software are established. Moving inward along the
spiral, we come to design and finally to coding. To develop computer software, we
spiral inward along streamlines that decrease the level of abstraction on each turn.
A strategy for software testing may also be viewed in the context of the spiral
(Figure 13.1). Unit testing begins at the vortex of the spiral and concentrates on each
unit (i.e., component) of the software as implemented in source code. Testing pro-
gresses by moving outward along the spiral to integration testing, where the focus is
on design and the construction of the software architecture. Taking another turn
outward on the spiral, we encounter validation testing, where requirements estab-
lished as part of software requirements analysis are validated against the software
that has been constructed. Finally, we arrive at system testing, where the software
and other system elements are tested as a whole. To test computer software, we spi-
ral out along streamlines that broaden the scope of testing with each turn.
Considering the process from a procedural point of view, testing within the con-
text of software engineering is actually a series of four steps that are implemented se-
quentially. The steps are shown in Figure 13.2. Initially, tests focus on each
component individually, ensuring that it functions properly as a unit. Hence, the name

Testing
strategy

System engineering



CHAPTER 13 TESTING STRATEGIES 391

Software /
testing steps . High-order
Requirements

tests

Code

/

Testing
“direction”

unit testing. Unit testing makes heavy use of testing techniques that exercise specific
paths in a component’s control structure to ensure complete coverage and maximum
error detection. Next, components must be assembled or integrated to form the com-
plete software package. Integration testing addresses the issues associated with the
dual problems of verification and program construction. Test case design techniques
that focus on inputs and outputs are more prevalent during integration, although
techniques that exercise specific program paths may be used to ensure coverage of
major control paths. After the software has been integrated (constructed), a set of
high-order tests are conducted. Validation criteria (established during requirements

' analysis) must be evaluated. Validation testing provides final assurance that software
meets all functional, behavioral, and performance requirements.

The last high-order testing step falls outside the boundary of software engineer-
ing and into the broader context of computer system engineering. Software, once
validated, must be combined with other system elements (e.g., hardware, people,
databases). System testing verifies that all elements mesh properly and that overall
system function/performance is achieved.

13.1.4 A Software Testing Strategy for Object-Oriented Architectures

The testing of object-oriented systems presents a different set of challenges for the
software engineer. The definition of testing must be broadened to include error dis-
covery techniques (e.g., formal technical reviews) that are applied to analysis and
design models. The completeness and consistency of object-oriented representa-
tions must be assessed as they are built. Unit testing loses some of its meaning, and
integration strategies change significantly. In summary, both testing strategies and
testing tactics (Chapter 14) must account for the unique characteristics of object-
oriented software.



392

%N
o
POINT
Like conventional
testing, 00 festing
begins “in the small.”
However, in most
cases, the smollest
element tested is a
closs or package of
collaborating closses.

PART TWO SOFTWARE ENGINEERING PRACTICE

The overall strategy for object-oriented software is identical in philosophy to the
one applied for conventional architectures, but differs in approach. We begin with
“testing in the small” and work outward toward “testing in the large.” However, our
focus when “testing in the small” changes from an individual module (the conven-
tional view) to a class that encompasses attributes and operations and implies com-
munication and collaboration. As classes are integrated into an object-oriented
architecture, a series of regression tests are run to uncover errors due to communi-
cation and collaboration between classes (components) and side effects caused by
the addition of new classes (components). Finally, the system as a whole is tested to
ensure that errors in requirements are uncovered.

SAFeHOME

When are
we finished
testing?

13.1.5 Ciriteria for Completion of Testing

A classic question arises every time software testing is discussed: When are we done
testing—how do we know that we've tested enough? Sadly, there is no definitive an-
swer to this question, but there are a few pragmatic responses and early attempts at
empirical guidance.

One response to the question is: You're never done testing; the burden simply shifts
from you (the software engineer) to your customer. Every time the customer/user



CHAPTER 13 TESTING STRATEGIES 393

executes a computer program, the program is being tested. This sobering fact under-
lines the importance of other software quality assurance activities.

Another response (somewhat cynical but nonetheless accurate) is: You're done
testing when you run out of time or you run out of money.

Although few practitioners would argue with these responses, a software engi-
neer needs more rigorous criteria for determining when sufficient testing has been
conducted. Musa and Ackerman [MUS89] suggest a response that is based on sta-
tistical criteria: “No, we cannot be absolutely certain that the software will never fail,
but relative to a theoretically sound and experimentally validated statistical model,

- we have done sufficient testing to say with 95 percent confidence that the probabil-

ity of 1000 CPU hours of failure-free operation in a probabilistically defined environ-
ment is at least 0.995.” Using statistical modeling and software reliability theory,
models of software failures (uncovered during testing) as a function of execution
time can be developed (e.g., see [MUS89], [SIN99] or [IEEO1]).

By collecting metrics during software testing and making use of existing software
reliability models, it is possible to develop meaningful guidelines for answering the
question: When are we done testing? There is little debate that further work remains
to be done before quantitative rules for testing can be established, but the empirical
approaches that currently exist are considerably better than raw intuition.

What

guidelines
lead to a
successful
software testing
strategy?

Later in this chapter, we explore a systematic strategy for software testing. But even
the best strategy will fail if a series of overriding issues are not addressed. Tom Gilb
[GIL95] argues that the following issues must be addressed if a successful software
testing strategy is to be implemented:

Specify product requirements in a quantifiable manner long before testing com-
mences. Although the overriding objective of testing is to find errors, a good test-
ing strategy also assesses other quality cHaracteristics such as portability,
maintainability, and usability (Chapter 15). These should be specified in a way that
is measurable so that testing results are unambiguous.

State testing objectives explicitly. The specific objectives of testing should be
stated in measurable terms. For example, test effectiveness, test coverage, mean
time to failure, the cost to find and fix defects, remaining defect density or fre-
quency of occurrence, and test work-hours per regression test all should be stated
within the test plan [GIL95].

Understand the users of the software and develop a profile for each user category.
Use-cases that describe the interaction scenario for each class of user can reduce
overall testing effort by focusing testing on actual use of the product.

Develop a testing plan that emphasizes “rapid cycle testing.” Gilb [GIL95] recom-
mends that a software engineering team “learn to test in rapid cycles (2 percent of



394

PART TWO SOFTWARE ENGINEERING PRACTICE

project effort) of customer-useful, at least field ‘trialable,” increments of functional-
ity and/or quality improvement.” The feedback generated from these rapid cycle

- tests can be used to control quality levels and the corresponding test strategies.

Build “robust” software that is designed to test itself. Software should be designed
in a manner that uses antibugging (Section 13.3.1) techniques. That is, software
should be capable of diagnosing certain classes of errors. In addition, the design
should accommodate automated testing and regression testing.

Use effective formal technical reviews as a filter prior to testing. Formal technical
reviews (Chapter 26) can be as effective as testing in uncovering errors. For this
reason, reviews can reduce the amount of testing effort that is required to produce
high-quality software.

Conduct formal technical reviews to assess the test strategy and test cases themselves.
Formal technical reviews can uncover inconsistencies, omissions, and outright er-
rors in the testing approach. This saves time and also improves product quality.

Develop a continuous improvement approach for the testing process. The test strat-

egy should be measured. The metrics collected during testing should be used as
part of a statistical process control approach for software testing.

end user requirements islike inspecting a building based on the work done by the iderior designes
foundations, girders, and plumbing.”

There are many strategies that can be used to test software. At one extreme, a soft-
ware team could wait until the system is fully constructed and then conduct tests on
the overall system in hopes of finding errors. This approach, although appealing,
simply does not work. It will result in buggy software that disappoints the customer
and end-user. At the other extreme, a software engineer could conduct tests on a
daily basis, whenever any part of the system is constructed. This approach, although
less appealing to many, can be very effective. Unfortunately, most software devel-
opers hesitate to use it. What to do?

A testing strategy that is chosen by most software teams falls between the two ex-
tremes. It takes an incremental view of testing, beginning with the testing of indi-
vidual program units, moving to tests designed to facilitate the integration of the
units, and culminating with tests that exercise the constructed system. Each of these
classes of tests is described in the sections that follow.

13.3.1 Unit Testing

Unit testing focuses verification effort on the smallest unit of software design—the
software component or module. Using the component-level design description as a
guide, important control paths are tested to uncover errors within the boundary of



b What

“® errors are
commonly found
during unit
testing?

CHAPTER 13 TESTING STRATEGIES 395

the module. The relative complexity of tests and the errors those tests uncover is lim-
ited by the constrained scope established for unit testing. The unit test focuses on the
internal processing logic and data structures within the boundaries of a component.
This type of testing can be conducted in parallel for muitiple components.

Unit Test Considerations. The tests that occur as part of unit tests are illustrated
schematically in Figure 13.3. The module interface is tested to ensure that informa-
tion properly flows into and out of the program unit under test. Local data structures
are examined to ensure that data stored temporarily maintains its integrity during all
steps in an algorithm'’s execution. All independent paths (basis paths) through the
control structure are exercised to ensure that all statements in a module have been
executed at least once. Boundary conditions are tested to ensure that the module op-
erates properly at boundaries established to limit or restrict processing. And finally,
all error handling paths are tested. ;

Tests of data flow across a module interface are required before any other test is
initiated. If data do not enter and exit properly, all other tests are moot. In addition,
local data structures should be exercised and the local impact on global data should
be ascertained (if possible) during unit testing.

Selective testing of execution paths is an essential task during the unit test. Test
cases should be designed to uncover errors due to erroneous computations, incor-
rect comparisons, or improper control flow. Among the more common errors in
computation are (1) misunderstood or incorrect arithmetic precedence, (2) mixed
mode operations, (3) incorrect initialization, (4) precision inaccuracy, and (5) incor-
rect symbolic representation of an expression. Comparison and control flow are
closely coupled to one another (i.e., change of flow frequently occurs after a com-

Unit test

Interface

Local data structures
Boundary conditions
Independent paths
Error handling paths

Module

Test
cases




396

Be sure that you
design fests o execute
every error-handling
path. If you don’t, the
path may foil when it
is invoked, exacer-
bating an already dicey
situation.

ﬁpwas.

There are some situg-
tions in which you will
ot have the resources
to do comprehensive
unit festing. Select
critical modules and
those with high cyclo-
matic complexity, ond
unit fest only those.

PART TWO SOFTWARE ENGINEERING PRACTICE

parison). Test cases should uncover errors such as (1) comparison of different data
types, (2) incorrect logical operators or precedence, (3) expectation of equality when
precision error makes equality unlikely, (4) incorrect comparison of variables, (5) im-
proper or nonexistent loop termination, (6) failure to exit when divergent iteration is
encountered, and (7) improperly modified loop variables.

Boundary testing is one of the most important unit testing tasks. Software often
fails at its boundaries. That is, errors often occur when the nth element of an n-
dimensional array is processed, when the ith repetition of a loop with i passes is in-
voked, when the maximum or minimum allowable value is encountered. Test cases
that exercise data structure, control flow, and data values just below, at, and just
above maxima and minima are very likely to uncover errors.

Good design dictates that error conditions be anticipated and error-handling
paths set up to reroute or cleanly terminate processing when an error does occur.
Yourdon [YOU75] calls this approach antibugging. Unfortunately, there is a tendency
to incorporate error handling into software and then never test it. A true story may
serve to illustrate:

A computer-aided design system was developed under contract. In one transaction pro-
cessing module, a practical joker placed the following error handling message after a se-
ries of conditional tests that invoked various control flow branches: ERROR! THERE IS NO
WAY YOU CAN GET HERE. This “error message” was uncovered by a customer during
user training!

Among the potential errors that should be tested when error handling is evalu-
ated are: (1) error description is unintelligible; (2) error noted does not correspond
to error encountered; (3) error condition causes operating system intervention
prior to error handling; (4) exception-condition processing is incorrect, or (5) error
description does not provide enough information to assist in the location of the
cause of the error.

Unit test procedures. Unit testing is normally considered as an adjunct to the
coding step. The design of unit tests can be performed before coding begins (a pre-
ferred agile approach) or after source code has been generated. A review of design
information provides guidance for establishing test cases that are likely to uncover
errors in each of the categories discussed earlier. Each test case should be coupled
with a set of expected results.

Because a component is not a stand-alone program, driver and/or stub software
must be developed for each unit test. The unit test environment is illustrated in
Figure 13.4. In most applications a driver is nothing more than a “main program” that
accepts test case data, passes such data to the component (to be tested), and prints
relevant results. Stubs serve to replace modules that are subordinate to (called by)
the component to be tested. A stub or “dummy subprogram” uses the subordinate
module’s interface, may do minimal data manipulation, provides verification of en-
try, and returns control to the module undergoing testing.



CHAPTER 13 TESTING STRATEGIES

397

Unit test envi- ‘ |

ronment
Interface
Driver Local data structures
. b Boundary conditions
/ a Independent paths
Error handling paths
_ Module
socto be
tested

Y

RESULTS -

Drivers and stubs represent overhead. That is, both are software that must be
written (formal design is not commonly applied) but that is not delivered with the fi-
nal software product. If drivers and stubs are kept simple, actual overhead is rela-
tively low. Unfortunately, many components cannot be adequately unit tested with
“simple” overhead software. In such cases, complete testing can be postponed until
the integration test step (where drivers or stubs are also used).

Unit testing is simplified when a component with high cohesion is designed.

. When only one function is addressed by a component, the number of test cases is re-

duced and errors can be more easily predicted and uncovered.

13.3.2 Integration Testing

A neophyte in the software world might ask a seemingly legitimate question once all
modules have been unit tested: “If they all work individually, why do you doubt that
they’ll work when we put them together?” The problem, of course, is “putting them
together"—interfacing. Data can be lost across an interface; one module can have an
inadvertent, adverse affect on another; subfunctions, when combined, may not pro-
duce the desired major function; individually acceptable imprecision may be magni-
fied to unacceptable levels; global data structures can present problems. Sadly, the
list goes on and on.

Integration testing is a systematic technique for constructing the software archi-
tecture while at the same time conducting tests to uncover errors associated with in-
terfacing. The objective is to take unit tested components and build a program
structure that has been dictated by design.



398

PART TWO SOFTWARE ENGINEERING PRACTICE

Top-down inte-
gration

Gnvm’

Taking the “big bang”
approach fo infegration
s @ lozy stategy that
is doomed to failure.
Integrate incrementally,
festing as you go.

Gpwcs’

When you develop o
project schedule, you'll
have to consider the
manner in which inte-
gration will occur so
that components will
be available when
needed.

There is often a tendency to attempt nonincremental integration that is, to con-
struct the program using a “big bang” approach. All components are combined in ad-
vance. The entire program is tested as a whole. And chaos usually results! A set of
errors is encountered. Correction is difficult because isolation of causes is compli-
cated by the vast expanse of the entire program. Once these errors are corrected,
new ones appear and the process continues in a seemingly endless loop.

Incremental integration is the antithesis of the big bang approach. The program is
constructed and tested in small increments, where errors are easier to isolate and
correct; interfaces are more likely to be tested completely; and a systematic test ap-
proach may be applied. In the paragraphs that follow, a number of different incre-
mental integration strategies are discussed.

Top-down integration. Top-down integration testing is an incremental approach
to construction of the software architecture. Modules are integrated by moving
downward through the control hierarchy, beginning with the main control module
(main program). Modules subordinate (and ultimately subordinate) to the main con-
trol module are incorporated into the structure in either a depth-first or breadth-first
manner.

Referring to Figure 13.5, depth-first integration integrates all components on a major
control path of the program structure. Selection of a major path is somewhat arbitrary
and depends on application-specific characteristics. For example, selecting the left-
hand path, components M,, M,, Ms would be integrated first. Next, M; or (if necessary
for proper functioning of M) Mg would be integrated. Then, the central and right-hand



O What are the
steps for
top-down
integration?

). What

% problems
may be
encountered when
top-down
integration is
chosen?

CHAPTER 13 TESTING STRATEGIES 399

control paths are built. Breadth-first integration incorporates all components directly
subordinate at each level, moving across the structure horizontally. From the figure,
components M,, M;, and My would be integrated first. The next control level, M;, My,
and so on, follows. The integration process is performed in a series of five steps:

1. The main control module is used as a test driver, and stubs are substituted
for all components directly subordinate to the main control module.

2. Depending on the integration approach selected (i.e., depth or breadth first),
subordinate stubs are replaced one at a time with actual components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with the real
component.

5. Regression testing (discussed later in this section) may be conducted to en-
sure that new errors have not been introduced.

The process continues from step 2 until the entire program structure is built.

The top-down integration strategy verifies major control or decision points early
in the test process. In a well-factored program structure, decision making occurs at
upper levels in the hierarchy and is therefcre encountered first. If major control prob-
lems do exist, early recognition is essential. If depth-first integration is selected, a
complete function of the software may be implemented and demonstrated. For ex-
ample, consider a classic transaction structure (Chapter 10) in which a complex se-
ries of interactive inputs is requested, acquired, and validated via an incoming path.
The incoming path may be integrated in a top-down manner. All input processing
(for subsequent transaction dispatching) may be demonstrated before other ele-
ments of the structure have been integrated. Early demonstration of functional ca-
pability is a confidence builder for both the developer and the customer.

Top-down strategy sounds relatively uncomplicated, but, in practice, logistical
problems can arise. The most common of these problems occurs when processing
at-low levels in the hierarchy is required to adequately test upper levels. Stubs re-
place low-level modules at the beginning of top-down testing; therefore, no signifi-
cant data can flow upward in the program structure. The tester is left with three
choices: (1) delay many tests until stubs are replaced with actual modules, (2) de-
velop stubs that perform limited functions that simulate the actual module, or (3) in-
tegrate the software from the bottom of the hierarchy upward.

The first approach (delay tests until stubs are replaced by actual modules) causes
us to lose some control over correspondence between specific tests and incorpora-
tion of specific modules. This can lead to difficulty in determining the cause of errors
and tends to violate the highly constrained nature of the top-down approach. The
second approach is workable but can lead to significant overhead, as stubs become
more and more complex. The third approach, called bottom-up testing, is discussed
in the next section.



What are the

steps for
bottom-up
integration?

%,
POINT
Bottom-up infegration
eliminates the need for

complex stubs.

PART TWO SOFTWARE ENGINEERING PRACTICE

Bottom-up integration. Bottom-up integration testing, as its name implies, begins
construction and testing with atomic modules (i.e., components at the lowest levels
in the program structure). Because components are integrated from the bottom up,
processing required for components subordinate to a given level is always available
and the need for stubs is eliminated. A bottofn-up integration strategy may be im-
plemented with the following steps:

1. Low-level components are combined into clusters (sometimes called builds)
that perform a specific software subfunction.

2. Adriver (a control program for testing) is written to coordinate test case in- A
put and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the pro-
gram structure.

Integration follows the pattern illustrated in Figure 13.6. Components are com-
bined to form clusters 1, 2, and 3. Each of the clusters is tested using a driver (shown
as a dashed block). Components in clusters 1 and 2 are subordinate to M,. Drivers
D, and D, are removed and the clusters are interfaced directly to M,. Similarly, driver
D, for cluster 3 is removed prior to integration with module M,. Both M, and M,, will
ultimately be integrated with component M., and so forth.

Bottom-up
integration

H

N ———

~

N ———

o

7 ~

SN
< .
; : Cluster 3
\Y%

Cluster 2

Cluster 1 <




